Growing Radial Basis Function Networks

نویسنده

  • E. BLANZIERI
چکیده

This paper presents and evaluates two algorithms for incrementally constructing Radial Basis Function Networks, a class of neural networks which looks more suitable for adtaptive control applications than the more popular backpropagation networks. The rst algorithm has been derived by a previous method developed by Fritzke, while the second one has been inspired by the CART algorithm developed by Breiman for generation regression trees. Both algorithms proved to work well on a number of tests and exhibit comparable performances. An evaluation on the standard case study of the Mackey-Glass temporal series is reported.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the use of back propagation and radial basis function neural networks in surface roughness prediction

Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...

متن کامل

Long-Term Peak Demand Forecasting by Using Radial Basis Function Neural Networks

Prediction of peak loads in Iran up to year 2011 is discussed using the Radial Basis Function Networks (RBFNs). In this study, total system load forecast reflecting the current and future trends is carried out for global grid of Iran. Predictions were done for target years 2007 to 2011 respectively. Unlike short-term load forecasting, long-term load forecasting is mainly affected by economy...

متن کامل

Approximation of Function by Adaptively Growing Radial Basis Function Neural Networks

In this paper a neural network for approximating function is described. The activation functions of the hidden nodes are the Radial Basis Functions (RBF) whose parameters are learnt by a two-stage gradient descent strategy. A new growing radial basis functions-node insertion strategy with different radial basis functions is used in order to improve the net performances. The learning strategy is...

متن کامل

Growing Radial Basis Neural Networks: Merging Supervised And Unsupervised Learning With Network Grow - Neural Networks, IEEE Transactions on

This paper proposes a framework for constructing and training radial basis function (RBF) neural networks. The proposed growing radial basis function (GRBF) network begins with a small number of prototypes, which determine the locations of radial basis functions. In the process of training, the GRBF network grows by splitting one of the prototypes at each growing cycle. Two splitting criteria a...

متن کامل

Developing a Radial Basis Function Neural Networks to Predict the Working Days for Tillage Operation in Crop Production

The aim of this study was to determine the probability of working days (PWD) for tillage operation using weather data with Multiple Linear Regression (MLR) and Radial Basis Function (RBF) artificial networks. In both models, seven variables were considered as input parameters, namely minimum, average and maximum temperature, relative humidity, rainfall, wind speed, and evaporation on a daily ba...

متن کامل

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995